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A theory of the deformation of a granular medium beyond the limit of elasticity is proposed, which takes into account both elastic 
and plastic deformations and enables the transition of the medium from a purely elastic state to a limit state to be traced. A 
system of functions is introduced which define the components of the stress and strain tensors, and a resolving system of equations 
of elastoplastic deformation of the medium is obtained for the case of a plane strained state. By taking the limit one can obtain 
the equations of the theory of limit equilibrium from these equations. The elastoplastic problem of the loading of a tube (a thick- 
walled circular cylinder) by internal pressure is solved. It is shown that the load corresponding to the transition of the tube to a 
purely plastic state over the whole cross section is not always identical with the load obtained using the limit equilibrium theory. 
The passage to the limit for which these two loads are the same is determined. The elastoplastie problem of the loading of a 
circular layer having a hole (a well) at the centre is solved in the new formulation. The depth of the layer for which a region of 
plastic deformation appears in the neighbourhood of the well are determined. The limit value of the depth at which the layer 
collapses is obtained. The residual stresses in the neighbourhood of the well when there is a repeated increase in the pressure 
to the value of the rock pressure are determined. The classical problem of the stressed state of a plane slope is solved in the 
elastoplastic formulation. A relation is established between the mechanical characteristics of the medium and the angle of the 
slope for which the slope always remains in the elastic state over the whole depth. It is shown that three different stress-strain 
states are possible in elastoplastic deformation. The transition to the limit state is traced and it is established that, unlike existing 
representations, plastic flow of the slope from a rigid plastic material is impossible for slope angles less than the angle of internal 
friction. For slope angles greater than the angle of internal friction plastic yield does not occur over the whole slope but only 
over its upper layer of a certain thickness. © 2005 Elsevier Ltd. All rights reserved. 

According to established terminology, the mechanics of granular media means the science of the laws 
of deformation of soils, rocks, inherently granular and granulated media and other materials, the 
behaviour of which is related by the fact that the conditions under which a transition occurs from an 
elastic state to a state of plastic flow (the yield criterion) depends on the hydrostatic pressure. 

Beginning with the basic work of Coulomb and up to the beginning of the 1960s, the mechanics of 
granular media developed mainly as the science of the statics of granular media. This was largely due 
to the fact that the equations describing the stressed state of a medium in the plane strained state [1], 
like the equations of the theory of perfect plasticity, are statically determinate, i.e. in the case of statically 
determinate boundary conditions they can be solved without having to invoke kinematic equations. The 
equations describing the stressed state are then hyperbolic type equations and have two families of 
characteristics, which are slip lines intersecting at angles which depend on the angle of internal friction 
of the granular medium. 

Attempts to investigate the strained state of a granular medium are based, as a rule, on the assumption 
that the material behaves as a rigid plastic medium and is incompressible. The latter assumption meant 
that the equations for determining the velocity fields also have two families of characteristics, which 
turned out to be mutually orthogonal and, consequently, were not identical with the characteristics of 
the equations describing the stresses. 

This contradiction was overcome using yield flow [2], based on applying the associated law to the 
yield criterion and the assumption of the rigid-plastic behaviour of the material. The main advantage 
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of this theory is that the characteristics of the equations describing the stress and velocity field for the 
plane strained state are identical, and the regions of limit states can be defined uniquely. On the basis 
of this model a detailed investigation of the resolving system of equations and the lines of discontinuity 
of the velocities and stresses was carried out in [3-6], a number of new problems were solved, including 
those with mixed boundary conditions, and effective numerical methods of solving boundary-value 
problems were developed. The drawback of this theory, as also of any theory of limit equilibrium, is 
the fact that it only enables one to determine the limit loads and the distribution of the stresses and 
strains in plasticregions. This was combined historically in such a way that the theories mentioned above, 
following Coulomb, came to be called, somewhat inaccurately, theories of limit equilibrium. Their main 
objective is tO find the limit loads, treated as loads, on reaching which, the medium passes to a limit 
state (a loss of stability occurs). Essentially, from the modern point of view, they are theories of  the 
yield of an ideal rigid plastic material, while the limit loads are understood as the loads, on reaching 
which, such yield becomes possible. It i s precisely in this sense that these terms will be used below. 

An attempt to take into account the elastic properties of the material# using the well-known approach 
[2] leads to the result that the total strain rates begin to depend not only on the stresses but also on 
their partial time derivatives, which gives rise to considerable mathematical difficulties both when 
analysing the resolving system of equations, and when solving specific problems. 

Another approach to determining the stress-strain state of a granular medium consists of using, as 
the equations relating the components of  the stress and strain tensors, particularly in engineering 
applications [7, 8]; relations similar to those of the theory of elasticity. In the initial states Of the loading, 
the moduli of elasticity are assumed to be constant, i.e. the usual Hooke's law holds, and as the load 
increases they are assumed to be variable, determined from experiment. When processing experimental 
diagrams it is recommended that both shear and normal moduli should be used, i.e. the procedure 
employed is similar to the method in which variable moduli of elasticity are introduced in the method 
of elastic solutions developed in the deformation theory of plasticity. However, the hypotheses which 
enable this method to be used in the mechanics of granular media have not been formulated and a 
generally accepted deformation theory of granular media has not so far been developed. The transition 
from elastic state to a limit state has not been investigated to any great extent. 

A similar situation also exists in the theory of plasticity. Thus, for the elastoplastic bending and twisting 
of rods and for the bending of plates the transition of the whole cross section of the rod or the plate 
to the plastic state occurs when there are external loads, identical with the loads given by the theory 
of limit equilibrium (see, for example, [9, 10]). On the other hand, for the elastoplastic deformation of 
a thick-walled tube the whole cross section of the tube transfers to a purely plastic state for a load less 
than the limit load, and in the case of bending and twisting the transition of the whole cross section to 
a purely plastic state is accompanied by an unlimited increase in the deformations, whereas in the case 
of a tube the deformations remain finite [11]. 

Before constructing a deformation theory of granular media, we note that in the theory of  plasticity 
there is a theorem due to II'yushin [12] which asserts that, in the case of simple loading, yield theory 
and deformation theory lead to the same results, that is, the equations of yield theory can be integrated. 
To prove this theorem the material is assumed to be incompressible and a power law of hardening is 
used. Since a change in volume occurs in the model used in [2], while the material is assumed to be 
non-hardening, II'yushin's theorem cannot be applied directly to it. It was shown in [13, 14] that for 
the Case of simple deformation the equations of yield theory [2] can be integrated and the goVerning 
equations of the mechanics of granular media can be represented in the form of the equations of the 
deformation theory of plasticity [15]. 

1. THE C O N D I T I O N  FOR THE EQUATIONS OF YIELD T H E O R Y  
, TO BE I N T E G R A B L E  

In the mechanics of Soils, rock and granular media, the criterion for the limit state (the condition for 
plastic yield) is usually taken in the form 

qb(~,  T) = 0,  (Y = CYii]3, "~ = #S i jS i j / 2  (1.1) 

where sij = cYij - cY6ij are the components of the stress deviator. The form of the function is found by 
experiment, where d ~ / d ~  < 0. Here and henceforth we will assume that the tensile stresses are positive. 

tKUKUDZHANOV, V. N. et al., Investigation of the localization Of plastic deformations when there is a loss of slope stability. 
Preprint No. 538. Institute of Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1994. 
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By the associated flow law [2], for the components of the plastic strain rates and rates of change of 
the relative volume, we will have 

{;~ = ) ~)lll , ( laap~ ~Rll s/j], {~, ~,c~* (1.2) 
= ° / j +  ax2x)  = Sa  

We will introduce the deviator of the plastic strain rates with components kP = k p - ~P~ij and the 
intensity of the shear plastic strain rates 1] p "~ "p" p = e i j eo /2 .  Then for the parameter )~ we obtain 2~ = 
2qP/i0~b/Oxl. Without loss of generality we will assume that 0qs/~,~ > 0. Then relations (1.2) take the 
form 

• r l  p i~ p 2 p d ' r ,  (1.3) ePij = -~-sij ,  = - ~ q  

• p 0 In the case of the simple deformation [13, 14] t p = tot, and consequently ~ff = t °, eij = eij, 
i i p = ~ ]  0 0 • P e~eij /2,1.e,  the strain rates do not change with time, in the hyperspace sij the deformation trajectory 
is a straight line, while the components of the stress tensor, by virtue of relations (1.1) and (1.3), remain 
constant. The quantities s ° must be chosen so that the condition that the deformation trajectory is 
orthogonal to the limit surface (1.1) is satisfied, i.e. the second of equalities (1.3) is satisfied. Then 

0 5 e  o t = - e "c/d0" 

The important fact was not taken into account in [13, 14]. 
Integrating the equations with respect to t and taking into account the fact that 

2:0 ~ f t  t o t  t p, q P t  e q / 2 t  = = = = ei]/2 = 

where 7 p is the intensity of shear plastic strains, we obtain the expressions 

e~. = ~/p T s i j +  e * ,  t p 2 .  pd'C = - S t  (1.4) 

Here t* and e} are constants of integration, which must be determined from the initial conditions. If 
we assume that the time t is measured from the instant of the onset of the plastic state, the constants 
t* and e~j must be taken equal to zero. 

In the theory of elasticity the strain and stress tensors are related by Hooke 's  law 

e 1 te = 1 1-2V0-, 7e X (1.5) 
eij = 2"G sij '  2 G  1 +-----v = 2"--G 

where G is the shear modulus and v is Poisson's ratio. 
Assuming, as usual [15], that the total deformations can be represented in the form of the sum of 

the plastic and elastic deformations, from Eqs (1.4) and (1.5) we obtain the relations 

( ~,P) 3, s ee ( 1  l - 2 v  2,/Pa,~'~ 
1 + T  "~ '~ '  t2 l  gazsJ ° eij = e 6 + e~ = ~-~ s o . . . .  e = + e p = (1.6) 

similar to the Hencky relations in the deformation theory of plasticity [15]. Note that they were obtained 
from other considerations previously in [13, 14]. This representation of the governing equations enables 
iteration methods to be developed for solving the problems of the mechanics of granular media [16, 
17], similar to the methods of elastic solutions in the deformation theory of plasticity. 

If relation (1.1) is a linear function of the form 

• (0",x) = x - ( H - o ) t g ~  = 0 (1.7) 

where H and ~ are constants of the material, which determine its mechanical properties, then in the 
space of the principal stresses oh, ~2 and ~3 it represents a circular cone with axis ~1 = 0 " 2  = 0"3 and 
angle at the vertex cp = arctg( 2 ~ J  tg~). 
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The Coulomb criterion usually used in applications [1, 18] (if one gives up the requirement that 
~1 -> ~2 >- ~3) has the form 

t(Yl --(~21 -< [ 2 H -  ((Yl + ~2)] sinp (123) (1.8) 

where P is the angle of internal friction and H is the reduced coefficient of cohesion, and in this space 
is a hexagonal pyramid with three planes of symmetry, which intersect the same axis G1 = (Y2 = (Y3. 

The use of criterion (1.8) when investigating the equations describing the three-dimensional stressed 
state of a medium leads to considerable mathematical difficulties, and, from this point of view, the cone 
(1.7) can be regarded as an approximation of criterion (1.8). 

Usually [18] it is recommended that a cone inscribed in the pyramid (1.8) should be used as an 
approximation. However, other approaches are also possible. In Fig. 1 we show a hexagon formed by 
the intersection of the pyramid (1.8) with the deviator plane 61 + (Y2 + (Y3 = 0, and three circles formed 
by the intersection of the cone (1.7) with the same plane, for three different values of 

~f3 sin p 2,f3 sin p (1.9) 
= , tgt~2,3- 3 + s i n p  tgt~ *]3 + sin 2 p 

where t~l corresponds to the cone inscribed in a pyramid (1.7), (z 2 corresponds to the small cone 
circumscribed about it and ~3 corresponds to the large cone circumscribed about it. 

2. THE R E S O L V I N G  SYSTEM OF E Q U A T I O N S .  THE P L A N E  
S T R A I N E D  STATE 

The principal values of the stress tensor can be expressed in terms of the quantities t~ and x and a new 
function m in the form 

I~l, 2 = (y + 2xcos(co ~ rc/3)/4~, (Y3 = o - 2"ccos co/4t3 (2.1) 

Then the principal values of the strain tensor, on the basis of expressions (1.6), can be written as 

e l ,  2 ---- e + 2~'COS(tO q: rC/3)/,fJ, e 3 = e-- 2)'C0S~/4C3 (2.2) 

We then have the finite relation 

1 1-2vt~_2(V_ x)dx (2.3) 
e = 2G 1 +'-'--~ 3 2-G)d-~ 
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The components of the stress tensor in an orthogonal Cartesian system of coordinates can be 
represented in the form 

oij = OSij + 2X[nnnjl cos(to - re/3) + ni2nj2cos(OJ + M3) - ni3nj3cosoa]/,413 (2.4) 

where nij are nine direction cosines, specifying the directions of the principal axes of the stress tensor, 
uniquely defined by the three Euler Angles. The components of the strain tensor can be represented 
in a similar way in terms of the quantities (2.2) and (2.3) and the same values of the direction cosines. 
Consequently, the components of the stress and strain tensors are defined by the five functions c~, "c, e, 
7, m and the three Euler angles. Three differential equations of equilibrium and the two finite relations 
(1.1) and (2.3) are insufficient to find them, i.e. the problem is statically indeterminate and one must 
invoke the equations for the displacements to solve it. 

We will obtain the resolving system of differential equations for the case of a plane strained state 
when ez = 0 and the stress and strain tensors are independent for the z coordinate. The z axis is the 
principal axis, i.e. ~z = c~3; the angle of proper rotation q0 is the angle between thex axis and the direction 
of the principal stress Ga, while the remaining Euler angles are equal to zero. Then Eq. (2.4) can be 
represented in the form 

~x,y = t~+ X[cosm/4~ + sinmcos2tp], T, xy  = "~sinmsin2tp (2.5) 

The principal values of the components of the strain tensor (2.2) can be rewritten as 

~1,2 = 27sin(rc/3+m), e3 = 0 (2.6) 

while, for the components of the strain tensor themselves, we obtain 

I?.x,y = ~/[.4/'3C0S0)--- + sint.ocos2tp], 7xy = 7sinmsin2tp (2.7) 

Substituting the components of (2.5) into the two equilibrium equations 

we obtain 

~cy x ~'Cxy OOy + ~"Cxy 
a-7+Ty =o, -aT ax = °  

IcY + "~(cosm/,,/-3 + sint.ocos2qo)] + ~yy(XSintosin2qo) = 0 

[Cr + "c(cost.o/,,/'3 - sinmcos2t, p)] + ~x('~sintosin2tp) = 0 
(2.8) 

The two equations (2.8) and criteria (1.1) are insufficient to determine the stressed state, i.e. the 
problem continues to remain statically indeterminate. 

Expressing the components of the strain tensor on the left-hand sides of formulae (2.7) in terms of 
the components of the displacement vector 

au by l(Ou by) 
q = gxx' = gyy' = +gxx 

and dividing the first two equations by the third, we obtain two equations for determining the displacement 
field 

au (auao) 
2sino)sin2~P~x x -  (4r3cosm + sinmcos2~p) ~yy + ~xx = 0 

• • Ov sintocos2~p)(~ + bv  2slnmsmZq0~yy - ( ,f3cos¢0- ~xx) = 0 
(2.9) 
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The finite relation of (2.3) in the case of a plane strained state takes the form 

2 1 l - 2 v  6 _ 2 ( 7 _  "c)dx 
~]tcostO = 2G 1 +----~ 5 2-GJd'~ (2.10) 

The four differential relations (2.8) and (2.9) and two finite relations (1.1) and (2.10) contain six 
required functions ~, x, % tO, u, ~ and enable us to obtain the components of the stress tensor and of 
the displacement vector, u and a). 

The system of equations obtained can be simplified considerably if we neglect the elastic deformations. 
To do this it is sufficient in formula (2.10) to put the terms containing the factor 1/G equal to zero. 
Assuming, to simplify further calculations, that the criterion of the limit state (1.1) has the form of the 
linear function (1.7), we obtain from (2.10) 

co = arccos tg~x = tOo (2.11) -Z 

Note that the same result can be obtained if we assume that the deformations of the medium and, 
consequently, the quantity y, increase without limit. As will be shown below, when solving specific 
problems, it is precisely when we take the limit ~ /~  ~ that the solutions obtained using the theory of 
elastoplastic deformation tend to the solutions given by the theory of limit equilibrium. 

When deriving formula (2.11) we assumed that the cone (1.7) is inscribed in a Coulomb hexagonal 
pyramid. In that case the lines of contact of the cone with the pyramid lie in the plane 

63 = - Hsin2p + (1 + sin29)(61 + 62)/2 (2.12) 

which passes through the vertex of the pyramid and intersects the deviator plane along the straight line 
shown dashed in Fig. 1. The normal to the surface of the cone is orthogonal to the (Y3 = ~z axis only 
along these two contact lines and, consequently, only along them is the condition of plane strain 
e3 = ez = 0 satisfied for a rigid-plastic material. In other words, in this case, in the space of the principal 
stresses the points corresponding to this stressed state can only lie on these contact lines. Then it is 
obvious that criterion (1.7) can be replaced by condition (1.8), which in this case can be rewritten as 

t = ( H - s ) s i n 9 ;  s = (c  z +62)/2, t = ( 6 j - ~ 2 ) / 2  (2.13) 

Using the well-known formulae ~x,y = s +_ tcos2q0, Z~y = tsin2q0, we obtain from condition (2.13) 

6x v = s + ( H - s ) s i n p c o s 2 c p ,  T, x y  = ( H - s ) s i n p s i n 2 c  p 

Note that, taking formulae (2.11), (2.12) and (1.7) into account, these expressions can be obtained 
directly from relations (2.5). In this case Eqs (2.8) take the form 

3xOS + cos2CP~x xot + s in2~p~-  2t(sin2CP~x x -3cP cos2Cp~yy) = 0 3 c P  

~s Ot_ ~, ( ~cp sxn2~p~yy) = 0 0y + sin2~P~x cos2~p~yy + 2t cos2CP~xx + " bcp 
(2.14) 

Taking (2.13) into account for the boundary conditions, specified in stresses, they enable us to determine 
the stressed state of the medium, i.e. as a result of neglecting the elastic deformations the problem has 
become statically determinate. 

Equations (2.14) are hyperbolic-type equations and have two families of characteristics 

)~:~q0 = const, dy /dx  = tg(q0:t:~g) (2.15) 

Here we have introduced the notation 

dt /ds  = cos2q0, 2~g = r~/2 + 9, d)~ = sin2~gds/t 
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The equations can be rewritten as 

~u 
2sin2q~-~-(c°s2q°-c°s2~)(~vv +ol ) '~=y  OxJ 0 

2sin2q0~--fy + (cos2cp + cos2~) ~yy OxJ 0 

(2.16) 

They are also hyperbolic-type equations, and the equations of their characteristics are identical with 
(2.15), while the conditions along the characteristics have the form 

duldv = -tg(qo:l:~) (2.!7) 

Note that Eqs (2.14)-(2.17), are identical, apart from the notation, with the equations of the theory 
of limit equilibrium, obtained in [19] using criterion (1.1), the associated flow law (1.2) and the 
assumption of rigid-plastic behaviour of the material. The difference is the fact that in Eqs (2.16) u 
and "0 are the components of the displacement vector, while previously in [19] u and a9 were the 
components of the velocity vector. However, Eqs (2.14) and (2.16) are also the equations of the theory 
of limit equilibrium, but have been obtained by taking the limit from Eqs (2.8) and (2.9), taking into 
account the elastic deformations in the plastic regions. Consequently, the theory of elastoplastic 
deformation developed above includes the theory of limit equilibrium and enables one to investigated 
the transition of a medium from the purely elastic state to a limit state. 

3. THE L O A D I N G  OF A C Y L I N D R I C A L  TUBE BY 
I N T E R N A L  P R E S S U R E  

In order to apply the equations obtained, we will consider the problem of the elastoplastic deformation 
of a cylindrical tube of inner radius a and outer radius b, loaded by an internal pressure p and which 
is in a plane strained state. The external pressure is equal to zero. 

So long as the pressurep is sufficiently small, the tube is in an elastic state over the whole cross section. 
The components of the strain tensor in a cylindrical system of coordinates connected with the axis of 
the tube are expressed in terms of the radial displacement as follows: 

du u 
Er = ~FF' E0 = 7' eZ = 0 (3.1) 

They satisfy the equation of compatibility of the deformations 

deo Eo - -  £ r  
d-7 + - -  - 0 (3.2) /- 

and are related to the components of the stress tensor 6r and G 0 by Hooke's law 

2G 
~r,o = l _ 2 v ( (  1 -V)I~r, 0+VE0, r), ~Z = V(~r+G0) (3.3) 

The latter, in turn, satisfy the equilibrium equation 

dOr (~r --  (YO 
d-T + - - r  = 0 (3.4) 

Solving system of equations (3.1)-(3.4), we obtain 

~r, 0 = C2~'-~', Gz = 2vC2, u = ( 1 - 2 v ) C 2 r +  (3.5) 
F 

The constants of integration can be obtained from the boundary conditions 

Or[.r=a m --P, (Yrlr=b = 0  (3.6) 
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Finally, the solution takes the form 

°r, 0 = ZP 1 :F , 
1 (  2 

_ a ( 3 . 7 )  Oz = 2vzp, u = ~-'~XP ( 1 - 2 v ) r +  r ; Z bZ_a 2 

It holds only in the case when the tube is in an elastic state over the whole cross-section. In order to 
obtain the range in which it is applicable, we substitute expression (3.7) for r = a into the yield criterion 
(1.7), and we obtain the critical pressure 

Po = Htg~ (3.8) 
~/( 1 + ~)2 + ( l - 2v)2z2/3 + 2(1 + v)ztgl2/3 

after exceeding which in the tube a region a < r _< c of plastic state appears. In the region c _< r < b, as 
before, formulae (3.5) remain valid, except that the constants of integration must be found from the 
condition for Or to be continuous at the point C and from the second of boundary conditions (3.6). 

Since the r, 0, z axes are the principal axes of the stress and strain tensors, the components of these 
tensors are identical with expressions (2.1) and (2.2), apart from the replacement of the subscripts 1, 
2 and 3 by 0, r and z. Hence, the non-zero components of the stress and strain tensors have the form 

or.0 = o + 2 x c o s ( t o + M 2 ) / 4  r~, Oz = cr-2xcosto/4~ (3.9) 

Er, 0 = e -I- 2yCOS(to + n/3)/,,/-3, e z = e-- 2yCOSto/,~ = 0 (3.10) 

Introducing expressions (3.9) and (3.10) into the equilibrium equation (3.4) and into the equation 
of compatibility of the deformations (3.2) and using the yield criterion in the form (1.7), we obtain 

r d [ ~ + + ( H - ~ ) t g ~ c o s ( t o +  3)]-2(H-~)tgo~sinto = O (3.11) 
43 

¢r[ ( r "/sin to+ +ysinto = 0 

Taking expression (1.7) into account, the finite relation (2.10) takes the form 

2 1 l - 2 v  2 / 
2-G ] + V  a + ~ tg~ .y  ~ G ( H - o ) t g @  'COS to = 

(3.12) 

(3.13) 

The system of three equations (3.11)'(3.13) enables us to obtain the three required functions G, ? 
and co, which completely define the stress-strain state in the region a < r < c. The radial displacement 
can be found from the formula 

u = ~0r = 2rysin(to + n/3) 

The boundary conditions for Eqs (3.11) and (3.12) are found from the condition of continuity of the 
components of the stress and strain tensors at the boundary r = c between the elastic-state and the 
plastic-state regions. After conversion, these conditions take the form 

r = c: to =toc,  ~ = ac, Y = Yc (3.14) 

where 

4t3 b2, = H I 1  4r31--2-v 1 ]-1, ~G(H Oc)tg a 
tgtoc = 1 - 2 V ~  ~c + 2" 1 + V tgtxcostocJ Y~ = - (3.15) 

In the elastic-state region c < r < b, as before, formulae (3.5) hold, where the second of conditions 
(3.6) enables us to write the first three of them as 

crr, o = C  1 1:1: , az=2V~-~; ~- 5 
3Cc 

2(1 +v)  
(3.16) 
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The quantity (~c is given by the second expression in (3.15). 
Assuming the quantity c/b to be a loading parameter, we obtain a Cauchy problem for Eqs (3.11)- 

(3.13) with initial conditions (3.15) at the point c and a region of integration a < r < c; in the elastic- 
state region c < r _ b the solution is given analytically by relations (3.16). The internal pressure p 
corresponding to a specific value of the parameter c/b, will be obtained from the conditionp = -or(a). 

Although this system of equations can also be solved analytically, this is inconvenient in view of the 
complexity of the expressions obtained. A detailed numerical solution of the problem was obtained in 
[20]. We will merely note that when the loading parameter c/b changes from a value of a/b to 1, the 
internal pressure p varies from P0 (3.8) to a certain pressure P x, corresponding to the transition of the 
tube to the plastic state over the whole cross section. However, the deformations of the tube remain 
finite. 

When the internal pressurep in the tube exceedspl, there is no elastic-state region and the tube is 
completely in a plastic state (but its supporting power is not exhausted). Equations (3.11)-(3.13) with 
boundary conditions (3.6) hold as before over the whole cross section of the tube. Since in this case 
the first of conditions (3.14) and (3.15) loses its meaning, we will introduce the value of 5' on the external 
contour of the tube as the loading parameter. The specified value of 5'(b) and also the second and third 
of conditions (3.14) and (3.15) enable us to obtain the values of (y(b) and 0J(b) and thereby determine 
the Cauchy problem in the region a _< r < b. 

The internal pressure p corresponding to the chosen value of 5'(b) will be obtained, as before, from 
the condition p = -(~r(a). Normalizing the function 5'(b), we introduce the dimensionless parameter 

= ~(b) so that ~(b) = 1 corresponds to the transition of the tube to the plastic state over the whole 
cross section. In Fig. 2 we show curves of the dimensionless quanti typ = p(b /a ) /H  for tga = 1.7 and 
v = 0.1 and different values of ~. As ~ increases, which corresponds to an increase in the displacement 
u(b) on the external contour of the tube, the curves in Fig. 2 approach the limit curve, shown dashed 
in the figure. The form of this curve can be obtained fairly simply if we consider the limiting case when 
the loading of the tube leads to infinitely large deformations. As was shown above, such a passage to 
the limit is equivalent to putting 1/G = 0 in the equations of elastoplastic deformation and converting 
them into the limit-equilibrium equations. 

In this case we obtain 0~ -- c00 = const (2,11), and Eqs (3.11) and (3.12) can be fairly simply integrated: 

-m -n (ctg2o~_ 1/3)-+1/21 = H - A r  , $ = Br  , m , n = 2 / [ l +  (3.17) 

whereA and B are constants of integration. Boundary conditions (3.6) enable us to determine the value 
of A, and also the internal pressure corresponding to this limit solution 

p* = H( (b /a )  m -  1) (3.18) 

The constant B can be chosen arbitrarily, since the material is unstrengthened, i.e. in the limit state 
the displacements in the tube can only be determined to within an arbitrary constant factor. 

Thus, depending on the value of the internal pressure p the tube can be in one of three states of 
deformation: purely elastic when 0 _<p -<P0, elastoplastic when P0 < P -<Pl and purely plastic when 
Pl < P < P*. When p = p* the deformations of the tube, obtained from the elastoplastic solution, 
becomes infinitely large (fracture occurs). Internal pressures exceeding p* are impossible. If follows 
from these results that the transition of the tube to the plastic state over the whole cross section does 
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not denote the onset of limit state. The loadsp asymptotically approach the limit loadsp* (the dashed 
curve in Fig. 2) when the deformations of the tube increase without limit. Note that this was not pointed 
out earlier in [20]i 

In the majority of cases the values ofp~ andp* differ considerably, while when Poisson's ratio v and 
the angle of internal friction p satisfy the equality 1 - 2v = sinp, they are simply identical (here the 
transition from o~ to p corresponds to the first formula of (1.9)). This equality is satisfied, in particular, 
when the material of the tube is incompressible (v = 1/2) and ideal plastic (sinp = 0). 

The problem of the limit state of a cylindrical tube was considered by Nadai [18], assuming that 
oz = (Or + O0)/2 = O and that the material is incompressible. The components of the stress tensor or 
and o0 and the value of the limit pressure he obtained are identical with the results obtained here for 
a cone inscribed in the Coulomb pyramid, i.e. tga = tgal, where the dependence of tgo~ on the angle 
of internal friction p is given by the first formula of (1.9). However, the component oz and the 
displacement u differ considerably from those obtained above. Nadai did not consider the elastoplastic 
state of the tube and the transition to a limit state. 

4 .  THE E L A S T O P L A S T I C  D E F O R M A T I O N  OF A C I R C U L A R  STRATUM 

We will consider the following problem as the second example. Under a layer of height L of ground 
with a specific gravity Ys there is a stratum of material of thickness h, where h ~ L. A well of radius a 
is bored into the ground and the stratum and is filled with a liquid with specific gravity Yt (see Fig. 3). 
It is required to determine the stress-strain state in the stratum, assuming that the transition from the 
elastic state to the limit state is determined by criterion (1.7). 

If there is no well, the stressed state in the stratum corresponds to hydrostatic compression: 
Or, 0, z = -y~L, i.e. the stresses are equal to the rock pressure. When there is a well the elastic stresses 
are expressed by formulae (3.5), and the constants CI and C2 are found from the boundary conditions 

Orlr-_, = - y t L ,  Or, O01r ~ --> - 7 , L  

The components of the stress tensor take the form 

Or, o = - T s L ( 1 T ( 1 - A ) ( a / r )  2) = O+'C, O z = -YsL;  A = ytlYs (4.1) 

From Hooke's law we obtain 

1 1 - 2 V  

¢z = 2G l + v  YsL' 
1 . F 1 - 2 v  2 ]  

u = I~or = - ~ - - - ~ [ s L [ - i - - - ~ r +  (1 -A)  (4.2) 
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Hence, for elastic deformation the presence of a well gives rise to no additional displacements in the 
vertical direction. 

Formulae (4.1) and (4.2) hold so long as the whole stratum is in the elastic state. Substituting expression 
(4.1) into criterion (1.7) with r = a, we obtain the critical value of the depth at which the stratum lies 

L~ = H tgc~ (4.3) 
11 s I - A - tgo~ 

after exceeding which a region of plasticity a <_ r <_ c occurs. 
Replacing the subscripts 1, 2, 3 ~ 0, r, z in formulae (2.1) and (2.2), we obtain 

-y ,L  = ~ -  2 ( H -  ~)tgc~cosco/,J3 (=~z) (4.4) 

The finite relation (2.3) takes the form 

1 1 - 2 V ~ +  tg~ y -  cr)tg~ (4.5) 
= 2G 1 + v 3 ( H -  

Substituting the expressions for the components of the stress and strain tensors into Eqs (3.2) and 
(3.4), we obtain Eq. (3.11) and the equation 

r~r[  ~ d  + 2ycos(co-  rG3)/,,/~] + 2ysino~ = 0 (4.6) 

The two differential equations ((3.11) and (4.6)) and the two algebraic equations ((4.4) and (4.5)) 
enable us to obtain the four required functions or, co, e and y, which completely define the stress-strain 
state in the region a < r _< c. 

In the elastic-state region c ___ r < ~o the components of the stress tensor, as before, will have form 
(3.5); taking into account the conditions at infinity we have C2 = -y~L, and then 

cyr, o = - ~s L + C1/r2 (4.7) 

From the conditions of continuity of the components of the stress tensor on the boundary r = c between 
the regions of the elastic state and the limit state, we have boundary conditions (3.14) in which 

co c = - n / 2 ;  c~ c = - y s  L, yc = ~ G ( H - O c ) t g ~  (4.8) 

and we obtain C1 = c2(H + yAL)tgo~ for the constant in formula (4.7). 
If we introduce the relative radius r/c, then conditions (3.14) and (4.8) for r/c = 1 and the specified 

values of Ys and L > L 1 define the Cauchy problem for the system of equations (3.11), (4.4)-(4.6). Their 
numerical integration is carried out up to the point a/c < 1, at which the following boundary condition 
is satisfied 

tJ a + 2 ( H -  c~a)tgt~cos(co a + 7t/3)/4~ = -ytL (=~rlr = ~) (4.9) 

Detailed results of such calculations were presented in [20]. However, the system of equations (4.4), 
(4.9) can be solved in explicit form and show that a solution only exists when 

L_< L 2 = 2 H .... sinp 
Y,( 1 - A) - (1 + A) sin p 

It turns out that when L ~ L 2 the components of the strain tensor increase without limit, while when 
L > L2 there is no solution which corresponds physically to fracture (collapse) of the stratum. This 
interesting fact is illustrated by a number of ~zG/H curves for a number of values of the parameter  
g = L/L1, shown in the right upper part of Fig. 3. As previously [20], we take tgc~ -- v = A = 1/3 for 
the mechanical characteristics of the material, in which case the limit value of the parameter g = 
L2/L1 = 3.178. The intersection of the dashed line in Fig. 3 with the curve corresponding to a certain 
value of the parameter  p. gives the dimensionless value of the boundary of the elastic-state region and 
the region of plasticity r/c for this value of the parameter  g. 
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Thus, if a well is bored into the stratum, then, when condition (4.3) is satisfied, a region of plastic 
yield will occur in it. If we then increase the pressure in the well, the stratum will gradually become 
overloaded. When the pressure becomes equal to the rock pressure, unlike the case of purely elastic 
deformation of the stratum, it does not return to the initial state of hydrostatic compression, and residual 
strains occur in it. In Fig. 3 we show the results of calculation of the residual stress 80 in the stratum 
referred to the value of the rock pressure ysL, for a number of values of g. The case g = 1 corresponds 
to the horizontal straight line (purely elastic deformation). The dashed line is the boundary between 
the regions of elasticity and plasticity. From these curves we can judge how close the pressure in the 
stratum is to the rock pressure after overloading, i.e. how much the predictions of the elastic and 
elastoplastic theories differ. Calculations show that the residual radial stress in the stratum differs from 
the rock pressure by no more than 10%, while the residual stress 8o turns out to be considerably less 
than the rock pressure in modulus - the difference approaches 90% (for other values of the parameters 
of the problem, for example, for a lower ratio of the densities A, the difference may even exceed 100%, 
i.e. the residual stress ~0 becomes a tensile stress). 

This result is of considerable practical importance when constructing a theory of the hydrofracture 
of the stratum. In existing research on hydrofracture [21, 22] it is assumed that the stratum is in an 
elastic state. The values of the hydrofracture pressure then obtained from theoretical calculations turn 
out to be greater than those observed in practice, and these are ahnost everywhere less than the rock 
pressure y,L. This difference has been explained by the scouring of argillanceous formations, which 
bound the productive stratum above and below, during the drilling process, the smaller values of the 
side pressure compared with the rock pressure, etc. It is easy to see that when the residual stresses in 
the neighbourhood of the well are taken into account the same result is obtained. Moreover, what is 
more, for the rocks encountered in practice, the value o f L  1 is fairly small, of the order of hundreds of 
meters. 

5. E L A S T O P L A S T I C  D E F O R M A T I O N  OF A S L O P E  

Consider a plane slope of uniform soil with specific gravity Ys. This slope is situated at an angle ~ to 
the horizontal, and its surface is unloaded. We will obtain the stress-strain state of this slope in the gravity 
field. We will introduce a system of coordinates xyz so that the y axis is directed into the slope while 
the y = 0 plane corresponds to its surface. The x axis is directed downwards along the surface of the 
slope while the z axis is directed transversely. 

Since the slope is infinite in the x and z directions, all the physical quantities in this problem will be 
functions solely of the y coordinate, which enables us to seek the displacement vector in the form 
u = (u(y) ,  v(y), 0). The stress and strain tensors will then have the following non-zero components: 
O'x, O-y, O-z, ~Txy and 7~y = u'/2, ey = ~' (the prime denotes a derivative with respect to y). 

The equilibrium equations 

I 

"r,'xy+TsSin[~ = 0, O-y+~/sCOS~ = 0 

are easily integrated, and, taking the conditions O-y ly = 0 = ~xy ly = 0 = 0 into account, we obtain 

"rdxy = - y s y s i n ~ ,  O-y =-7sYCOS~ (5.1) 

In the elastic region the components O-x = O-z are given by Hooke's law 

V 
O- x = - Y  sY i"  ~ cos [~ (5.2) 

Then, we obtain the following expressions for the components of the strain tensor 

1 . u '  
7xy = -~'~7sysm~ = ~, 

1 1 - 2 v  
ey . . . .  2G 1 - v  TsYC°S~ = 1)' (5.3) 

The elastic solution obtained only holds in the region where the relation ~ < ( H -  O-) tgc~ holds. 
Calculating the intensities of the shear stress z and the mean pressure O-, we obtain the depth of the 
upper bound of the elastic deformation region 

Yl = 7s s[3 ctgo~ tg213+~ - ~ 1  ; 
1 - 2 v  1 + v  
~ ,  - ( 5 .4 )  = 1 - v  I1 1 - v  
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It follows from formula (5.4) that if tgcz > ~/3 ~/rl and the angle of the slope 

13 --- 131 = arctg(~/rl2tg 2c~ - 3{ 2/3) (5.5) 

the whole slope will be in an elastic state and there will be no plastic region. This result will also be 
true for an ideally loose material, i.e. for a material with H = 0. 

The surface in the parameter space of the problem a, 13, v, corresponding to the equality sign in 
formula (5.5), is shown in Fig. 4 for the case of a cone, inscribed into the Coulomb pyramid, i.e. tga is 
given by the formula of (1.9) (the hatched region). The equations of the curves which bound this surface 
have the form 

1 ,,/-3sinp ; A C :  sinp = 1, v - 1 +4tg2_...... ~ 
A B :  v = ~, tg13 ,- ,]3 + sin2p 5 +4tg213 

1 - 2 v  
B C :  13 = 0, sinp - 4/~__(2_ v) 

It is only possible for a plastic region to occur if the parameters of the problem lie within this surface. 
Its form depends very much on the approximation employed for the Coulomb criterion. The curves 
which bound the surface corresponding to the circumscribed cone, i.e. tgo~ -- 2{-3sinp/(3 - sinp), are 
represented by the heavy lines. The curve BC': 13 = 0, sinp -- 1 - 2v, when the slope angle is equal to 
zero, is of particular intersect. In this case a stressed state of uniaxial compression with stresses Ox arises 
in the slope (the base) with ~y = ~z, "C~y = "cyz = "ca = 0, and stressed states, which lead to the onset of 
plasticity, lie along the external faces of the Coulomb pyramid (modes A, C and E, see Fig. 1). In this 
case formula (5.4) can be obtained directly from formula (1.8) if we put G2 = -TsYl, ~1 = G3 = 
~2v/(1 - v) in the latter. The condition that, for such a compression of the medium, it remains in the 
elastic state, can be written as sinp _ 1 - 2v. For an ideally loose material (H = 0) strict inequality will 
denote that, for any uniaxial loading, the material remains elastic for any values of the compressing 
stress, and as sin p = 1 - 2 plastic yield occurs. 

If the angle 13 > 131, a region 0 < y < Yl of elastic deformation will exist in the soil, and the soil will 
be in the limit state at greater depths. Formulae (5.1) also remain true in the plastic region, but relation 
(5.2) and (5.3) turn out to be different, since it will be necessary to use the plastic-yield law (1.6), (1.7) 
instead of Hooke's law. 

We will seek ~r x in the form 

o~ = -y,y(cos 13 - gsin 13) (5.6) 

where I.t = g(y) is an unknown factor. Relation (1.7) gives 

JT,2xy "1- ( ~ x 2 - -  Oy) /3 = ( H -  (20 x + ~Jy)/3)tgo~ 
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or  .̧  

(3-4tgZc~)g2+ 12g0 tg2~+9(1 -02 tg2~)  = 0; 0 = 0(y) = (Hl(ysy)+cos~)lsin[5 

Solving this quadratic equation and substituting instead of tg(z its expression in terms of the angle 

p (ctg~z = ~] ctg2p + 4/3, the first formula in (1.9), the inscribed cone), we obtain 

g = -20 tg2p  + J (02 tg2p-  I)(3 + 4tg2p) (5.7) 

(the second root of the quadratic equation is discarded since it does not satisfy the condition of continuity 
of the stress tensor on the boundary between the elastic and plastic regions). 

Knowing the components of the stress tensor, the strain tensor can be obtained from (1.6). After 
calculations we obtain 

I~y 2 -, -, 2 2(~ 2tg2p /]11111 ~'xr  H3+4tg_.__pI~rl ctgl3+(2rl tg p)______.~0-3 +- t =pJJll ll 
= 2G 0-c tg l3  / ~+ 3 (5.8) 

The displacement field u(y), v(y) of the slope can be obtained by integrating the components of the 
strain tensor in accordance with the equation u' = 27xy, v '  = ~y with initial conditions u(h) = 0 and 
~0 (h) = 0, corresponding to a layer of depth h on a rigid base. 

Analysis of expression (5.8) shows that as 0 tends to ctgp, which corresponds to depths 

_ H sinp (5.9) 
Y--->Y2 7ssin(13_ p ) 

the deformations fy and 7~y, and also the displacements u and v, increase without limit, whereas the 
stresses Ox, Sy and "Cxy remain finite. If h = Y2, the displacements on the lower boundary of the plastic 
layer reach infinitely high values, which physically corresponds to fracture of the slope. 

For angles [31 < [3 < p a plastic region wilI exist in the soil, extending f romyl  to infinity (i.e. h can be 
as large as desired). If the slope angle is greater than P, the slope will be in equilibrium only if its depth 
does not exceed the critical value (5.9). Hence, when [3 > p the plastic region can only occupy the layer 
y e [Yl, Y2]. 

The results of numerical calculations of the displacements u(y) and v(y) (in units of G/H) are 
presented in Fig. 5 for different values of the dimensionless depths h = 7s/H for P = 30°, [3 = 40 °, and 
v = 1/3, to which the critical values [31 = 7.9°,y0 = 1.75 H/Ts, YI = 1.10H/7s, y2 = 2.8794 H/% correspond. 

The problem can also be solved in a rigid-plastic formulation, i.e. as a limit equilibrium problem. 
The components of the stress tensor in the plastic region in this case also have the form (5.1). In the 
elastic layer the stress and strain states are not defined, and its weight must be regarded as an additional 
load acting on the boundary of the layer, which is in the limit state. The value of this load is determined 
by the height of the rigid layeryl, which can be found from formula (5.4). For a given value of the slope 
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angle [~ and the mechanical characteristics of the medium, (x and H, the va lueofy l  depends on Poisson's 
ratio v and reaches its maximum value 

H sinct 
Y0 = ],ssin([ ~_ ~) (5.10) 

which corresponds to v = 1/2. 
For a slope angle 13 satisfying the inequality ct ___ 13 < p, the value of h can be chosen arbitrarily in the 

range Y0 < h < oo. Equations (2.16) for finding the displacement field are homogeneous in the 
components  of the displacement, and for the boundary conditions u(h)  = v(h) = 0, the components  
of the displacement u and v will be identically equal to zero in the whole plastic region; the components  
of the stress tensor (5.1) and (5.6) in this region satisfy the yield criterion. 

When the angle [3 becomes greater  than P we must take h = Y2, and wheny ----> Y2 the angle % defined 
by the equation tg2q0 = 2"C~y/(~x- Gy), tends to the value % = -x/4 - 9/2, i.e. the liney = h is the envelope 
of the characteristics of the second family of (2.15), which may be lines of discontinuity of the 
displacements [3]. The values of one of the components can then be specified arbitrarily, while the second 
is found from the condition v/u  = tg 9, i.e. in the plastic regions the components  of the velocity a r e  
constant, while on the rigid-plastic boundary y = Y2 they suffer a discontinuity. Consequently, plastic 
yield of a massive slope of rigid plastic material is impossible at slope angles less than the angle of internal 
friction, although a solution in stresses exists. For slope angles greater than the angles of internal friction, 
only the part  of the slope with a depthy2 given by (5.8) can transfer into a state of plastic yield, not the 
whole layer. Despite the large number of publications devoted to solving this problem 111, 18], this result 
has been obtained here for the first time, and the elastoplastic solution described has played an important 
part  which, as can easily be seen, transfers asymptotically into the solution corresponding to the theory 
of limit equilibrium. 
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